Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Craig Williamson, John M. D. Storey and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.048$
$w R$ factor $=0.126$
Data-to-parameter ratio $=17.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Ethyl (E)-4-(2-formylphenoxy)but-2-enoate

The molecule of the title compound, $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4}$, possesses normal geometric parameters. Its approximately planar conformation could be influenced by two intramolecular C H. . O interactions.

Comment

The title compound, (I), was prepared as a test substrate for an investigation into potential catalysts for the intramolecular Stetter reaction. The compound is well known and has been previously used in this context (Kerr et al., 2002). In the present work, the synthesis used was that of Gong et al. (1998).

(I)

The molecule of compound (I) possesses normal geometric parameters (Table 1). The complete molecule is approximately planar (for the non-H atoms, the r.m.s deviation from the least-squares plane is $0.100 \AA$). This conformation might be stabilized by two intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions

Figure 1
A view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as small spheres of arbitrary radi. The possible $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are indicated by dashed lines.

Received 21 April 2005 Accepted 26 April 2005 Online 7 May 2005
(Fig. 1, Table 2). The acute $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bond angles are consistent with the intramolecular nature of these putative bonds. The r.m.s. deviation from the mean plane for atoms C 1 , $\mathrm{C} 2, \mathrm{C} 7, \mathrm{C} 8, \mathrm{C} 9, \mathrm{C} 10$ and O 2 is $0.043 \AA$ [maximum deviation 0.1005 (11) \AA for O 2$].$

There are no $\pi-\pi$ stacking or other weak intermolecular interactions in (I) and the crystal packing (Fig. 2) is controlled by van der Waals forces.

Experimental

A dry two-necked flask was charged with NaH ($15 \mathrm{mmol}, 360.4 \mathrm{mg}$). Dry dimethylformamide (40 ml) was added and the resulting suspension cooled to 273 K . Salicylaldehyde ($10 \mathrm{mmol}, 1.220 \mathrm{~g}$, 1.06 ml) was added and the solution stirred for 20 min . Ethyl 4bromocrotonate ($11 \mathrm{mmol}, 2.82 \mathrm{~g}, 2.01 \mathrm{ml}$) was added in one portion. The solution was then allowed to warm to room temperature and stirred for 1 h . Water (60 ml) was added, followed by extraction with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{ml})$. The combined organic phases were washed with saturated brine $(75 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed. Chromatography of the resulting solid in 10% EtOAc in hexane allowed collection of the desired product ($1.809 \mathrm{~g}, 77.2 \%$), which was recrystallized from ethanol as colourless blocks or plates; m.p 342344 K . Analysis, $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4}$ requires: C 66.66 , H 6.02%; found: C 66.53 , H 6.00%. Spectroscopic analysis: IR ($\mathrm{KBr}, \nu_{\max }, \mathrm{cm}^{-1}$): 2975.6 (Ar), $2902.4(\mathrm{CH}), 2859.5(\mathrm{CHO}), 1709.4\left(\mathrm{CO}_{2} \mathrm{Et}\right), 1671(\mathrm{CHO}) ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$, p.p.m.); $10.5(1 \mathrm{H}, s, \mathrm{CHO}$), $7.8(1 \mathrm{H}, d, J=8 \mathrm{~Hz}$, $\mathrm{Ph}), 7.6(1 \mathrm{H}, t, J=8 \mathrm{~Hz}, \mathrm{Ph}), 7.0(3 \mathrm{H}, m), 6.2(1 \mathrm{H}, d, J=15 \mathrm{~Hz}, \mathrm{CH}-$ $\left.\mathrm{CO}_{2} \mathrm{Et}\right), 4.8\left(2 \mathrm{H}, s, \mathrm{CH}_{2}\right), 4.2\left(2 \mathrm{H}, q, J=7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.3(3 \mathrm{H}, t, J=$ $8 \mathrm{~Hz}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$, δ, p.p.m.) 189.3 (CHO), 165.8 $\left(\mathrm{CO}_{2} \mathrm{Et}\right), 160.2,141.2,135.9,128.8,125.1,122.5,121.4,112.5,66.8$ $\left(\mathrm{CH}_{2}\right), 60.7\left(\mathrm{CH}_{2}\right), 14.2(\mathrm{Me})$; MS (ESI $\left.{ }^{+}\right)$: calculated: m / z 252.1230; found: $252.1232\left[M+\mathrm{NH}_{4}^{+}\right]$.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4}$

$M_{r}=234.24$
Monoclinic, $P 2_{1} / c$
$a=10.6759$ (6) \AA
$b=6.9487$ (4) \AA
$c=16.4346$ (6) \AA
$\beta=102.164$ (3) ${ }^{\circ}$
$V=1191.81(11) \AA^{3}$
$Z=4$
$D_{x}=1.305 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2702 reflections
$\theta=2.9-27.5^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Plate, colourless
$0.46 \times 0.27 \times 0.09 \mathrm{~mm}$

Data collection

Nonius KappaCCD area-detector
diffractometer
ω and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
$T_{\text {min }}=0.957, T_{\text {max }}=0.993$
10415 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.126$
$S=1.02$
2712 reflections
156 parameters
H -atom parameters constrained

2712 independent reflections
1830 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-13 \rightarrow 13$
$k=-8 \rightarrow 8$
$l=-17 \rightarrow 21$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.059 P)^{2}\right. \\
& +0.2428 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.002 \\
& \Delta \rho_{\text {max }}=0.20 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.036 \text { (5) }
\end{aligned}
$$

Figure 2
The unit-cell packing in (I), viewed down [010]. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$179.50(15)$	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$5.2(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{O} 2$	$-1.2(2)$		

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$	0.95	2.39	$2.7353(17)$	101
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 2$	0.95	2.38	$2.7221(19)$	101

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.95-0.99 \AA$, and refined as riding on their carrier atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C).

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor 1997); data reduction: DENZO (Otwinowski \& Minor 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the EPSRC National Crystallography Service (University of Southampton) for the data collection and the EPSRC National Mass Spectrometry Service Centre (University of Swansea) for the high resolution mass spectroscopy data.

References

Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

organic papers

Gong, Y., Najdi, S., Olmstead, M. M. \& Kurth, M. J. (1998). J. Org. Chem. 63, 3081-3086.
Kerr, M. S., Read de Alaniz, J. \& Rovis, T. (2002). J. Am. Chem. Soc. 124, 10298-10299.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

